When enolates attack, the arrow is drawn from the double bond to the electrophile, and NOT from the negatively charged oxygen! The enolate's carbonyl reforms, and a new bond is created at the alpha position.
But Aldehydes and ketones react differently than ester and acid chlorides.
a) Aldehydes and ketones are oxidation state II carbonyls (the carbonyl has carbon-heteroatom bonds- the double bonded oxygen counts twice).
They do not have a built-in leaving group, and so undergo nucleophilic acyl addition reactions. The carbonyl on the electrophile becomes an alcohol.
So the product from this reaction is a beta hydroxyl carbonyl. If this β-hydroxyl carbonyl is heated up, the hydroxyl will eliminate to from an alpha, beta unsaturated carbonyl.
The mechanism for a) is very similiar to that of an aldol condensation reaction.
b) Esters (and acid chlorides) are oxidation state III carbonyls (the carbonyl carbon has three carbon-heteroatom bonds). They have a built-in leaving group (-OR in the case of an ester, and Cl- for an acid chloride), and so undergo nucleophilic acyl substitution reactions. ("up, down, kick"). The carbonyl on the electrophile is reformed.
So the product from this reaction is a beta keto carbonyl.
The mechanism for b) is very similiar to that of a Claisen condensation reaction.