Organic Chemistry Practice Problems and Problem Sets
Mechanism (show a mechanism using curved arrows..)
The overall mechanism for Fischer esterification is shown below. This isn't a real mechanism, just an outline.
Methanol (the nucleophile) attacks the carbonyl carbon, forming a tetrahedral intermediate, which then loses a water to reform the carbonyl. This mechanism is called nucleophilic acyl substitution.
Use curved arrows to draw a full mechanism for this reaction. I've included structures for you to use as a guide.
This reaction takes place under acidic conditions, so the mechanism you draw will be similar to those in problem 706.
Acidic mechanisms only appear complicated because they contain several proton transfer steps.
Nucleophilic acyl substitution mechanisms have only three real steps- the "up, down, and kick."
First, the nucleophile attacks the carbonyl carbon, forming a tetrahedral intermediate (the "up").
Then the carbonyl reforms (the "down") and a leaving group leaves (the "kick").
MendelSet practice problem # 708 submitted by Matt on July 22, 2011.
The overall mechanism for imine formation is shown below. (This isn't a real mechanism, just an outline)
Use curved arrows to draw the full mechanism for imine formation under acidic conditions. (I've added outlines of the intermediate structures for you to use as a guide). This mechanism is similar to that in problem 706 (carbonyl hydrate equilibria).
This reaction takes place under acidic conditions, so oxygen should never be negative (only neutral or positively charged).
Acidic mechanisms tend to be a bit of pain, because you have to include many proton transfer steps (protonation and deprotonation).
MendelSet practice problem # 707 submitted by Matt on July 22, 2011.
Carbonyls are in equilibrium with their hydrate forms. This equilibrium happens in both acid and base.
Let's go through this equilibrium under acidic conditions. Draw a mechanism using curved arrows for each reaction below.
Remember that under acidic conditions, most species are either neutral or positively charged, and rarely negatively charged. So your structures will contain either ROH or ROH2+, but not RO-.
a) Carbonyl to Hydrate (acidic)
b) Hydrate to Carbonyl (acidic)
The interconversion between a carbonyl (sp2 carbon) and a tetrahedral intermediate (sp3 carbon) is the most common mechanism you will encounter in second semester organic chemistry.
You should be familiar drawing it under both acidic (this problem) and basic (problem 705) conditions.
In a), the carbonyl "goes up" to form a tetrahedral intermediate.
In b), an oxygen "comes back down" to reform the carbonyl and kick off a leaving group.
You will see this "up, down, kick" pattern in most mechanisms that involve attack at the carbonyl carbon, which is most of the reactions in second semester orgo!
a) Carbonyl to Hydrate (acidic) "UP"
Because this reaction takes place under acidic conditions, the carbonyl must protonate before the nucleophile attacks, to prevent oxygen from ever being negative (ROH instead of RO-).
b) Hydrate to Carbonyl (acidic) "DOWN"
The leaving group must protonate before it leaves, so it doesn't leave as a negative molecule (H2O instead of HO-).
MendelSet practice problem # 706 submitted by Matt on July 22, 2011.
Carbonyls are in equilibrium with their hydrate forms. This equilibrium happens in both acid and base.
Let's go through this equilibrium under basic conditions. Draw a mechanism using curved arrows for each reaction below.
Remember that under basic conditions, most species are either neutral or negatively charged, and rarely positively charged. So your structures will contain either ROH or RO-, but not ROH2+.
a) Carbonyl to Hydrate
Notice that no oxygen is ever positive during these basic mechanisms (always negative or neutral).
b) Hydrate to Carbonyl
The mechanisms in this problem and problem 706 are the most common mechanisms you will draw during second semester organic chemistry, and so it's a good idea to draw them out a few times.
In a), the nucleophile attacks the carbonyl carbon, and the double bond goes "up" to form a tetrahedral (sp3) carbon.
In b), one of the oxygen atoms acts as leaving group, and a lone pair on the other oxygen comes "down" to reform the double bond (and the sp2 carbon).
You will see this "up, down, kick" pattern in most mechanisms that involve attack at the carbonyl carbon, which is most of the reactions in second semester orgo!
a) Carbonyl to Hydrate (basic conditions) "UP"
b) Hydrate to Carbonyl (basic conditions) "DOWN"
MendelSet practice problem # 705 submitted by Matt on July 21, 2011.
Write out a mechanism for the reaction below using curved arrows. Be sure to include formal charges.
Ethers react with 2 equivalents of H-X to form water and two equivalents of alkyl halide.
In this case, the ether was cyclic, so the ring had to open up.
The reaction can go through either an SN1 or SN2 mechanism. Since this was a primary ether, it will go through an SN2 mechanism (the carbocation is too unstable for the reaction to go SN1).
MendelSet practice problem # 700 submitted by Matt on July 21, 2011.
Show a mechanism for the reduction of butyrolactone using LiAlH4.
Hydride reagents such as LiAlH4 and NaBH4 behave like hydride nucleophiles (H-), so that's what I used as shorthand. The real mechanism is very similar but involves aluminum coordinating to the oxygen.
Notice that the the ester will reform the carbonyl after the first hydride attacks. This is because esters have a built in leaving group, and so undergo nucleophilic acyl substitution reactions. The aldehyde that forms then undergoes a nucleophilic acyl addition reaction with the second equivalent of hydride.
Also note that you can't stop the reaction halfway at the aldehyde- LiAlH4 will take an ester all the way down to an alcohol.
MendelSet practice problem # 674 submitted by Matt on July 19, 2011.
Draw out the mechanism for the addition of excess phenyl Grignard to the carbonyl compound below.
This carbonyl has two leaving groups attached to it- each of those oxygens can take part in a nucleophilic acyl substitution reaction and form a new carbonyl product.
First the Grignard attacks the oxidation state IV carbonyl carbon (4 oxygen bonds, so oxidation state 4). The carbonyl itself will act as a leaving group and form a tetrahedral intermediate. But tetrahedral intermediates don't last if there are any leaving groups attached to the carbon, so the -O will "come back down again", kick off an oxygen leaving group, and reform the carbonyl.
Then a second equivalent of Grignard will attack that carbonyl (an ester), and we will do another nucleophilic acyl substitution reaction to form yet another carbonyl.
Finally, the third carbonyl doesn't have any leaving groups built in (it's a ketone), so when the third equivalent of Grignard attacks it, it will do a nucleophilic acyl addition reaction, and the product will be an alcohol.
Notice that as the reaction progresses the oxidation state of the carbonyl carbon (number of oxygen bonds attached to it) goes down form 4 to 3 to 2 and then to 1.
MendelSet practice problem # 670 submitted by Matt on July 18, 2011.
In your own words, what is the major difference in the addition of a Grignard reagent to an oxidation state III carbonyl (ester/acid chloride) versus an oxidation state II carbonyl? (aldehyde/ketone)
Oxidation state III carbonyls (esters, acid chlorides) contain a built-in leaving group (such as -OR or -Cl) and so undergo nucleophilic acyl substitution reactions. The product is another carbonyl.
Oxidation state II carbonyls (aldehydes and ketones) do not contain a built-in leaving group and so undergo nucleophilc acyl addition reactions (instead of substitution). The product is an alcohol.
Because Grignards react with all carbonyls- esters and aldehydes/ketones- esters and acid chlorides will react twice with Grignards: once in a Nuc Acyl Sub mechanism to form a ketone, which will then react with another equivalent of Grignard in a Nuc Acyl Add mechanism to form an alcohol.
MendelSet practice problem # 669 submitted by Matt on July 18, 2011.