Carbocations aren't very stable and so don't last very long after they are formed.
Use curved arrows to show:
a) how a carbocation reacts with a halide ions to form an alkyl halide.
b) how a carbocation reacts with water to form an alcohol.
c) how a carbocation reacts with a base to form an alkene.
For a), the product is neutral and so you are done after the nucleophile (Cl-) attacks the carbocation.
For b), the the intermediate is a protonated alcohol, and so you must do a proton exchange step (also called a hydrogen exchange or deprotonation) to get the final alcohol product, which is neutral.
For c), there are two different types of beta hydrogens, and so two different alkenes are possible.
The more stable alkene is the one that will form, and this will always be the most highly substituted alkene. This is Zaitsev's rule. The rationale for this is hyperconjugation: neighboring carbon atoms stabilize an alkene.
MendelSet practice problem # 335 submitted by Matt on June 7, 2011.
Each of the carbocations below will spontaneously rearrange. Draw the structure of the expected rearrangement product.
Be on the lookout for a 1,2-shift when you have a carbocation adjacent to a carbon atom that is more substituted (ex: a 2° carbocation next to a 3° or 4° carbon).
MendelSet practice problem # 332 submitted by Matt on June 7, 2011.
Rank the carbocations below in order of decreasing stability. (1 = most stable)
The more substituted the carbocation, the most stable it is. This is because of the inductive effect- adjacent carbon atoms donate some of their electron density to neighboring carbocations (which are electron deficient), making them closer to neutral and more stable.
So the 3° carbocation is the most stable.
MendelSet practice problem # 331 submitted by Matt on June 7, 2011.