α-D-Glucose is shown below. Draw its two chair forms. Which conformation is more stable? Explain.
I recommend using the common convention wedge = "up" and dash = "down."
The chair form on the left is more stable because it has no axial substituents, which lead to 1,3-diaxial interactions and higher energies. Glucose is the most stable of the hexose carbohydrates because it is the only one that has al substituents at C2-C5 in the equatorial position.
It's probably no coincidence that the most abundant sugar in the world (glucose) is also the sugar that is most stable!
MendelSet practice problem # 317 submitted by Matt on June 7, 2011.
For the reaction below, draw the structures of the borane intermediate and the final product.
This is a hydroboration reaction (also called hydroboration-oxidation in some textbooks). The product is an alcohol.
Boron bonds to the less substituted carbon, and is replaced with an oxygen after the borane intermediate is treated with peroxide, resulting in an anti-Markovnikov addition.
Note that one equivalent of BH3 reacts with three equivalents of alkene; the borane intermediate is not BH2(alkyl) but rather B(alkyl)3.
MendelSet practice problem # 344 submitted by Matt on June 7, 2011.
Let's work through an alkene addition reaction. Draw the structures for each of the species in the three boxes below (3º carbocation, protonated thiol, and thiol). Also draw curved arrows to show electron movement. Note: thiol = RSH, like an alcohol, but with sulfur instead of oxygen.
Note that this is the reverse of problem 519. Instead of going from thiol (alcohol) to carbocation to alkene, we're going from alkene to carbocation to thiol. In each step ask yourself "what arrows can I draw?" and choose the step that doesn't go backwards.
The first step is the alkene picks up a proton to form the more stable carbocation. (See problem 334 if you don't understand why only the 3º carbocation is formed). To get rid of the carbocation, we can either do a beta-elimination (E1) to form an alkene, or an addition reaction (SN1) to form a protonated thiol. Since forming the alkene would be going backwards, the only choice is addition.
Then you're left with a protonated thiol. How do we get rid of the positive charge on the sulfur? There are two legal moves- either the RSCH2CH3 acts as a leaving group, or the sulfur deprotonates. Since the RSCH2CH3 leaving would form a carbocation and take us backwards, the only option is for the sulfur to deprotonate.
Because the sulfur added to the more substituted carbon, this was a Markovnikov addition.
MendelSet practice problem # 520 submitted by Matt on June 30, 2011.
Indicate the major organic product of the reaction below. Include stereochemistry.
This is a hydrogenation reaction. The product is an alkane. But this product has two stereocenters.
Normally, the product would be a racemic mixuture of enantiomers (equal amounts of each stereoisomer). But in this case, the starting material is optically active (chiral but not racemic), so the products won't be equal and opposite as usual.
Since there is a substitutent blocking the top face of the molecule (isopropyl is a wedge), the hydrogens will preferentially add to the opposite face of the molecule (dashes).
MendelSet practice problem # 529 submitted by Matt on July 2, 2011.
Fill in the product for each reaction below. Indicate stereochemistry where appropriate.
NaNH2 is a very strong base (the pKa of ammonia, its conjugate acid, is about 35) and will easily depronate a terminal alkyne (pK ~ 25), producing a negatively charged alkyne carbon (an acetylide).
The acetylide is a strong nucleophile and will undergo an SN2 reaction with the 1ºalkyl halide. (acetylide is also a strong base, so with 2º or bulkier alkyl halides, it will go E2 instead).
Finally, Lindlar's catalyst will reduce the alkyne to a cis alkene.
MendelSet practice problem # 561 submitted by Matt on July 8, 2011.