Organic Chemistry Practice Problems and Problem Sets
aromaticity
Pyrrole is an example of a heteroaromatic compound: it contains a heteroatom (atom that is not carbon or hydrogen, such as N, O, S, etc.), and is aromatic.
Because pyrrole is aromatic, we should be able to draw many resonance forms- usually as many resonance forms as sides (in this case, five sides, so five resonane forms).
Draw all resonance forms for pyrrole. (I've started you off.)
One of the rules for aromaticity is that all atoms shoudl be sp2 hybridized. But the nitrogen in pyrrole is sp3 hybridized, so how is it still aromatic? Because in 4/5 of its resonance forms the nitrogen is sp2 hybridized; the real picture of pyrrole looks more like the structure on the left (dashed circle) than any individual resonance form.
MendelSet practice problem # 583 submitted by Matt on July 9, 2011.
Rationalize the follwing pKa values. Explain your answer in terms of the stabilites of the conjugates bases of each acid.
Note: the lower the pKa, the stronger the acid.
The benzylic proton (middle compound) is more acidic than the allylic proton (left compound) because its conjugate base is more stable. This is because it has more resonance forms.
Cyclopentadiene (right compound) is the strongest of the three because it has the most stable conjugate base. Why is it the most stable? Because it's aromatic! To be aromatic, a compound must:
be cyclic and planar
be sp2 hybridized
Have a Huckel number of pi electrons- 2, 6, 10, 14, etc.
The cyclopentadienyl anion meets all of these criteria, and so is aromatic, and very stable.
MendelSet practice problem # 582 submitted by Matt on July 9, 2011.