Organic Chemistry Practice Problems and Problem Sets
heteroaromatic compounds
Pyrrole undergoes eletrophilic aromatic substitution at C-2. Let's compare the resonance forms of EAS carbocation intermediates to see why this is the case. What do you think? Why C-2 and not C-3?
Electrophilic substitution at C-2 leads to a carbocation intermediate with three resonance forms, while substitution at C-3 leads to a carbocation intermediate with only two resonance forms.
The C-2 intermediate has more resonance forms than the C-3 intermediate, and so is more stable. Therefore, EAS occurs at C-2.
MendelSet practice problem # 591 submitted by Matt on July 9, 2011.
Pyrrole is an example of a heteroaromatic compound: it contains a heteroatom (atom that is not carbon or hydrogen, such as N, O, S, etc.), and is aromatic.
Because pyrrole is aromatic, we should be able to draw many resonance forms- usually as many resonance forms as sides (in this case, five sides, so five resonane forms).
Draw all resonance forms for pyrrole. (I've started you off.)
One of the rules for aromaticity is that all atoms shoudl be sp2 hybridized. But the nitrogen in pyrrole is sp3 hybridized, so how is it still aromatic? Because in 4/5 of its resonance forms the nitrogen is sp2 hybridized; the real picture of pyrrole looks more like the structure on the left (dashed circle) than any individual resonance form.
MendelSet practice problem # 583 submitted by Matt on July 9, 2011.