Organic Chemistry Practice Problems and Problem Sets
Alkene Formation: Elimination, Dehydration, and Zaitsev's Rule
The alcohol below is protonated and contains an oxygen with a positive charge. Using curved arrows, show the two "legal moves" that result in a neutral oxygen.
Protonation is a common first step in mechanisms. When you have a protonated alcohol, it's likely that either:
The alcohol will deprotonate to form a neutral alcohol (right), or
The alcohol will leave as a neutral molecule to form a carbocation.
Either one is possible. If you're not sure which one happens, remember that when writing out mechanisms, never go backwards- don't draw structures you have drawn before.
MendelSet practice problem # 518 submitted by Matt on June 30, 2011.
For the reaction below, draw the structures of the carbocation intermediate and the final product.
The delta (Δ) in the reaciton arrows means that heat is being added to this reaction, which tends to favor elimination over substitution. Also, the reaction is using a non-nucleophilic acid (H2SO4), which tends to favor elimination reactions (H3PO4 is another common reagent for E1 reactions, while HCl or HBr tend to go SN1).
Because this reaction is taking place in acid, a carbocation is likely to form, so this is an E1 reaction. Since water is lost over the course of the reaction, this is a dehydration, which is a type of elimination reaction.
MendelSet practice problem # 348 submitted by Matt on June 7, 2011.
Predict the product(s) of the reaction below, and used curved arrows to show a mechanism.
You know this is an elimination reaction because no nucleophile is present; H3PO4 and H2SO4 are non-nucleophilic acids. IF the reagent were HCl or HBr on the other hand, this would be a substitution reaction.
Since acid is present, a carbocation will probably form, so we know that this is an E1 mechanism.
The 2º carbocation that is initially formed will undergo a 1,2-hydride shift to become a 3° carbocation, but that doesn't affect the final product of the reaction; with either the 2° or 3° carbocation, the most stable alkene product is 2-methyl-2-butene.
MendelSet practice problem # 341 submitted by Matt on June 7, 2011.
Carbocations aren't very stable and so don't last very long after they are formed.
Use curved arrows to show:
a) how a carbocation reacts with a halide ions to form an alkyl halide.
b) how a carbocation reacts with water to form an alcohol.
c) how a carbocation reacts with a base to form an alkene.
For a), the product is neutral and so you are done after the nucleophile (Cl-) attacks the carbocation.
For b), the the intermediate is a protonated alcohol, and so you must do a proton exchange step (also called a hydrogen exchange or deprotonation) to get the final alcohol product, which is neutral.
For c), there are two different types of beta hydrogens, and so two different alkenes are possible.
The more stable alkene is the one that will form, and this will always be the most highly substituted alkene. This is Zaitsev's rule. The rationale for this is hyperconjugation: neighboring carbon atoms stabilize an alkene.
MendelSet practice problem # 335 submitted by Matt on June 7, 2011.
For a molecule to undergo an E2 reaction, the leaving group and the beta-proton must be in an anti-coplanar conformation (one atom straight up, the other straight down). Based on this, which compound undergoes E2 reaction with KOtBu faster? Why?
The methyl group is bulky and so is most stable in the equatorial position.
The 1,4 cis compound's most stable chair form has its leaving group (Br) and beta-hydrogen in an anti-coplanar (anti-periplanar in some textbooks) conformation.
So most of the time, 1,4 cis is in a chair conformation that is able to undergo an E2 reaction.
The opposite is true for the 1,4 trans compound. Most of the time it is in a chair conformation that is unable to undergo an E2 reaction.
Therefore, the 1,4 cis compound will undergo an E2 elimination reaction faster than the 1,4 trans compound.
MendelSet practice problem # 319 submitted by Matt on June 7, 2011.