The allylic alkene gives two products- the 1,2 product, and the 1,4 product.
However, the benzylic alkene only gives the one product (analogous to the 1,2 product), instead of multiple products (like the 1,4 product, 1,6 product, and 1,8 product). Why is this the case?
The allylic carbocation has two resonance forms, and so two positions where a nucleophile can attack, yielding two different products (1,2 and 1,4).
The benzylic carbocation has four resonance forms, and so in theory, four positions where a nucleophile can attack. But all but one of these resonance forms yield a product that is not aromatic, and so do not form.
Aromatic compounds are very stable; aromatic starting materials tend to only form products that are also aromatic.
MendelSet practice problem # 581 submitted by Matt on July 9, 2011.
Rationalize the follwing pKa values. Explain your answer in terms of the stabilites of the conjugates bases of each acid.
Note: the lower the pKa, the stronger the acid.
The benzylic proton (middle compound) is more acidic than the allylic proton (left compound) because its conjugate base is more stable. This is because it has more resonance forms.
Cyclopentadiene (right compound) is the strongest of the three because it has the most stable conjugate base. Why is it the most stable? Because it's aromatic! To be aromatic, a compound must:
be cyclic and planar
be sp2 hybridized
Have a Huckel number of pi electrons- 2, 6, 10, 14, etc.
The cyclopentadienyl anion meets all of these criteria, and so is aromatic, and very stable.
MendelSet practice problem # 582 submitted by Matt on July 9, 2011.
Pyrrole is an example of a heteroaromatic compound: it contains a heteroatom (atom that is not carbon or hydrogen, such as N, O, S, etc.), and is aromatic.
Because pyrrole is aromatic, we should be able to draw many resonance forms- usually as many resonance forms as sides (in this case, five sides, so five resonane forms).
Draw all resonance forms for pyrrole. (I've started you off.)
One of the rules for aromaticity is that all atoms shoudl be sp2 hybridized. But the nitrogen in pyrrole is sp3 hybridized, so how is it still aromatic? Because in 4/5 of its resonance forms the nitrogen is sp2 hybridized; the real picture of pyrrole looks more like the structure on the left (dashed circle) than any individual resonance form.
MendelSet practice problem # 583 submitted by Matt on July 9, 2011.
Imidazole (shown below) has two nitrogen atoms, N-1 and N-3. Which nitrogen is more basic?
To answer this problem, draw the product after each nitrogen protonates, and compare their stabilities. Explain your reasoning.
Imidazole is aromatic. When N-3 protonates, the product is still aromatic.
But when N-1 protonates, the product is no longer aromatic (and therefore significantly less stable).
Because of this, N-3 is much more basic than N-1. Another way of thinking of this is that the lone pair on N-1 is involved in the aromatic circuit, and so is not available to pick up a proton.
MendelSet practice problem # 584 submitted by Matt on July 9, 2011.