Rank the following compounds in order of decreasing reactivity with NaI in acetone. (1 = most reactive)
The only differences among these compounds is the substitution of the alpha carbon (methly, 1º, 2º, or 3º).
This is an SN2 reaction. We know this because NaI is an SN2 reagent- charges give it away; when we see charges (Na+ is positive and I- is negative) it's probably an SN2 reaction. So we want reactants that are less substituted: methyl is more reactive than 1º, which is more reactive than 2º, etc. So methyl bromide reacts the fastest with NaI.
MendelSet practice problem # 541 submitted by Matt on July 3, 2011.
Rank the following compounds in order of decreasing reactivity with water (solvolysis). (1 = most reactive)
This is an SN1 reaction. We know this because none of the reagents have charges (H2O is neutral; if it were HO-, it would probably be SN2 or E2). So a carbocation will be formed in this reaction, and the compound whose carbocation is the most stable will react the fastest. So the 3º bromide will react fastest with water.
MendelSet practice problem # 542 submitted by Matt on July 3, 2011.
Carbocations aren't very stable and so don't last very long after they are formed.
Use curved arrows to show:
a) how a carbocation reacts with a halide ions to form an alkyl halide.
b) how a carbocation reacts with water to form an alcohol.
c) how a carbocation reacts with a base to form an alkene.
For a), the product is neutral and so you are done after the nucleophile (Cl-) attacks the carbocation.
For b), the the intermediate is a protonated alcohol, and so you must do a proton exchange step (also called a hydrogen exchange or deprotonation) to get the final alcohol product, which is neutral.
For c), there are two different types of beta hydrogens, and so two different alkenes are possible.
The more stable alkene is the one that will form, and this will always be the most highly substituted alkene. This is Zaitsev's rule. The rationale for this is hyperconjugation: neighboring carbon atoms stabilize an alkene.
MendelSet practice problem # 335 submitted by Matt on June 7, 2011.
For the reaction below, draw the structures of the carbocation intermediate and the final product.
The delta (Δ) in the reaciton arrows means that heat is being added to this reaction, which tends to favor elimination over substitution. Also, the reaction is using a non-nucleophilic acid (H2SO4), which tends to favor elimination reactions (H3PO4 is another common reagent for E1 reactions, while HCl or HBr tend to go SN1).
Because this reaction is taking place in acid, a carbocation is likely to form, so this is an E1 reaction. Since water is lost over the course of the reaction, this is a dehydration, which is a type of elimination reaction.
MendelSet practice problem # 348 submitted by Matt on June 7, 2011.
The alcohol below is protonated and contains an oxygen with a positive charge. Using curved arrows, show the two "legal moves" that result in a neutral oxygen.
Protonation is a common first step in mechanisms. When you have a protonated alcohol, it's likely that either:
The alcohol will deprotonate to form a neutral alcohol (right), or
The alcohol will leave as a neutral molecule to form a carbocation.
Either one is possible. If you're not sure which one happens, remember that when writing out mechanisms, never go backwards- don't draw structures you have drawn before.
MendelSet practice problem # 518 submitted by Matt on June 30, 2011.
Let's work through an elimination reaction. Draw the structures for each of the species in the three boxes below (protonated thiol, carbocation, and alkene). Also draw curved arrows to show electron movement.
The first step in this reaciton, like many reactions, is an acid-base reaction- when you see an H+ (acid), the first step is usually something getting protonated. This starting material is a thiol (sulfur), but the same thing would happen with an alcohol or ether (oxygen).
When you have a protonated thiol (or alcohol, ether, etc.), you know the reaction isn't finished yet- products are rarely charged. There are two legal moves to get that positive charge off of the protonated thiol. Either the thiol deprotonates, or it takes off as a neutral leaving group. It can't deprontate because that would be going backwards, so your only "legal move" is for the HSCH2CH3 to act as a leaving group (See problem 518).
But then you're left with a carbocation, which is definitely not the final product. How can we get rid of it? (See problem 335 for general ways carbocations react). If the HSCH2CH3 attacked in an SN1 type reaction that would be OK, but it would be going backwards! So the only way to get rid of the carbocation is to do a beta-elminiation (E1).
MendelSet practice problem # 519 submitted by Matt on June 30, 2011.
Rank the following anions in order of decreasing stability (1 = most stable)
Charged molecules are generally less table than neutral ones, and each of the molecules below has a negatively charged oxygen.
But not all negative charges are equal; some oxygens are "closer to neutral" than others. How? Because resonance stabilizes charges by sharing electron density over multiple atoms (this is called electron delocalization).
Hydroxide (HO-) doesn't have resonance, so the oxygen has 100% of the negative charge to itself. On the other hand, the sulfonate ester (SO3R-) has three resonance forms, so each oxygen only has ~33% of a negative charge. So the sulfonate ester is the most stable anion.
In general, the more resonance forms a molecule has, the more stable it is.
MendelSet practice problem # 535 submitted by Matt on July 2, 2011.
Rank the following electrophiles in order of decreasing reactivity with NaN3 in DMF. (1 = most reactive)
The only differences among these three molecules is their leaving groups, so whichever has the best leaving group will react fastest with the nucleophile (azide, N3-). Stable molecules make good leaving groups, so the best leaving group of the three is SO3R-, which has has three resonance forms (see problem 535). So the third compound will react the fastest with NaN3.
MendelSet practice problem # 536 submitted by Matt on July 2, 2011.
Indicate the reagents necessary to carry out each transformation.
These are substitution reactions. In each case we're replacing the -OH with either -CN or -I, so the nucleophiles will be NaCN or NaI (SN2 conditions).
Hydroxide (HO-) is a poor leaving group, so the first step in each of these reactions will be to convert the alcohol into a better leaving group. Two good leaving groups are Br- and SO3R-, but which one to use?
Every time an SN2 reation takes place the wedge on the alpha carbon becomes a dash (and vice-versa).
For a), the wedge remains a wedge, so we have to do two SN2 reactions (wedge to dash to wedge again). So we use PBr3 to turn the OH into a Br. (Bromination of an alcohol with PBr3 is an SN2 reaction and so inverts stereochemistry).
For b), the wedge becomes a dash, so we can only do one SN2 reaction. So instead of using PBr3 to make the OH a better leaving group, we use RSO2Cl, which doesn't break the carbon-oxygen bond and so doesn't invert the stereochemistry.
MendelSet practice problem # 537 submitted by Matt on July 2, 2011.
Rank the following electrophiles in order of decreasing reactivity with NaN3 in DMF. (1 = most reactive)
This problem is similar to problem 536. The only difference among these compound is their leaving group, so the compound with the best leaving group will undergo substitution reactions most rapidly.
Good leaving groups are stable. Larger ions tend to be more stable than smaller atoms (due to a smaller charge:size ratio. See problem 288), so when going down the periodic table, stability increases. I- is more stable than Br-, which is more stable than Cl-, etc. So I- is the best leaving group, and 2-iodobutane will react the fastest with a nucleophile.
MendelSet practice problem # 538 submitted by Matt on July 3, 2011.
Rank the following compounds in order of decreasing nucleophilicity. (1 = most nucleophilic)
Nucleophilicity increases with electron density; negatively charged molecules are more nucleophilic than neutral molecules. So HS- is the best nucleophile in this group.
Nucleophilicity also increases with size. This is because the larger an atom, the more polarizable it is. Size increases as we go down the periodic table, so H2S is a better nucleophile than H2O.
MendelSet practice problem # 539 submitted by Matt on July 3, 2011.
Rank the following anions in order of decreasing stability (1 = most stable)
Each of these ions has a charge of -1, and none of them has any resonance forms. So the two things to consider are electronegativity and size. Electronegativity is relevant as we go from left to right across the periodic table. But here we are going up to down on the periodic table, so size is relavant. Larger ions are more stable than smaller ions (due to a smaller charge:size ratio), so I- is the most stable of the group.
MendelSet practice problem # 540 submitted by Matt on July 3, 2011.
For a molecule to undergo an E2 reaction, the leaving group and the beta-proton must be in an anti-coplanar conformation (one atom straight up, the other straight down). Based on this, which compound undergoes E2 reaction with KOtBu faster? Why?
The methyl group is bulky and so is most stable in the equatorial position.
The 1,4 cis compound's most stable chair form has its leaving group (Br) and beta-hydrogen in an anti-coplanar (anti-periplanar in some textbooks) conformation.
So most of the time, 1,4 cis is in a chair conformation that is able to undergo an E2 reaction.
The opposite is true for the 1,4 trans compound. Most of the time it is in a chair conformation that is unable to undergo an E2 reaction.
Therefore, the 1,4 cis compound will undergo an E2 elimination reaction faster than the 1,4 trans compound.
MendelSet practice problem # 319 submitted by Matt on June 7, 2011.
For each reaction below, determine whether the primary reaction is SN1, SN2, E1, or E2, and then draw the product.
Note: Me = methyl (CH3)
Predicting SN1/SN2/E1/E2 competition reactions tends to drive students crazy, but it's not so bad once you notice the general pattern:
basic conditions (positive and negative charges) tend to go SN2 or E2 (no carbocation)
neutral or acidic conditions tend to go SN1 or E1 (carbocation is formed).
That's how you determine a SN1/E1 reaction from an SN2/E2 reaction. But how to decide between substitution or elimination? General things to watch for are bulk, nucleophilicity, and heat:
If you see heat (or Δ), the reaction will go elimination.
If you see a big, bulky compound, the reaction will go elmination.
If you see a strong base, the reaction will go elimination. Strong base is anything stronger than RO-.
The exception: if everything is primary, it will probably go SN2.
These rules probably seem confusing, so let's go through these eight examples and see how they apply.
a) NaCN is charged! (Na+ and CN-), so it's SN2 or E2. CN is not a strong base, so it's SN2.
b) KOtBu (potassium tert-butoxide) is charged, so it's SN2 or E2. -OtBu is a strong base, so if anything is more bulky than 1º it will go E2. -OtBu is 3º, so it will definitely go E2 (KOtBu is a classic E2 reagent).
c) NaOMe is charged so E2 or SN2. NaOMe is a strong base, so if anything >1º it will go E2. -OMe is 1º (actually, not even 1º), but the alkyl halide is 2º, so it will go E2.
d) NaOMe is charged so E2 or SN2. NaOMe is a strong base, so if anything >1º it will go E2. But in this case there is no bulk whatsoever- nothing is >1º! NaOMe is 1 and the alkyl halide is also 1º, so it will go SN2.
e) Methanol (MeOH) is neutral so probably E1 or SN1. Methanol is a weak base and there's no bulk, so SN1. In general water and alcohol do a mixture of SN1 and E1 with alkyl halides (mostly SN1).
f) H2SO4 is acidic so probably E1 or SN1. Can't be SN1 though because there is no nucleophile in H2SO4. (HSO4- is a very weak nucleophile). An alcohol with H2SO4 or H3PO4 is a dehydration reaction- E1.
g) H2SO4 is acidic so probably E1 or SN1. In this case we have a nucleophile- Cl-, so it will go SN1.
h) Amines are neutral but they don't so SN1/E1- they tend to go SN2/E2, because they are basic (an amine solution has a basic pH). This amine is really bulky so it will go E2.
MendelSet practice problem # 560 submitted by Matt on July 7, 2011.
Show two ways to prepare the ether below from a combination of an alcohol and an alkyl halide via the Williamson ether synthesis.
Is one way better than the other? Why?
The Williamson ether synthesis takes place in two steps. First an alcohol is deprotonated to form a strong nucleophile (RO-, this step isn't shown in the image below). Then the alkoxide (negative alcohol) attacks an alkyl halide in an SN2 reaction.
So this problem is really asking, which step of conditions is most favorable for an SN2 reaction?
Recall that SN2 reactions compete with E2 reactions. If the nucleophile is too basic, or if there is too much bulk, it will go E2 instead of SN2. (See problem 560 for a full explanation of these competition reactions)
Below, the top combination uses the less substituted (1º) alkyl halide, and so is the best for an SN2 reaction.
The bottom reaction uses a bulkier (2º) alkyl halide, and will probably give a higher percentage of E2 side reaction.
MendelSet practice problem # 703 submitted by Matt on July 21, 2011.
Predict the product(s) of the reaction below, and used curved arrows to show a mechanism.
You know this is an elimination reaction because no nucleophile is present; H3PO4 and H2SO4 are non-nucleophilic acids. IF the reagent were HCl or HBr on the other hand, this would be a substitution reaction.
Since acid is present, a carbocation will probably form, so we know that this is an E1 mechanism.
The 2º carbocation that is initially formed will undergo a 1,2-hydride shift to become a 3° carbocation, but that doesn't affect the final product of the reaction; with either the 2° or 3° carbocation, the most stable alkene product is 2-methyl-2-butene.
MendelSet practice problem # 341 submitted by Matt on June 7, 2011.
E2 elimination reactions require anti-coplanar geometry. (note: some textbooks call this anti-periplanar).
Let's work through an E2 reaction, and rotate the molecule eblow into an anti-coplanar geometry to predict the product of this E2 reaction.
To predict the stereochemistry of the alkene product from an E2 reaction, we have to rotate the leaving group (Br) and the beta-proton into anti-coplanar geometry. It's easiest to put the H and Br in the plane of the page.
After we do this, we see that both the ethyl and phenyl groups are wedges, and the two methyls are dashes. So after the E2 reaction, the resulting alkene will have its two methyl groups cis to each other.
MendelSet practice problem # 531 submitted by Matt on July 2, 2011.