Organic Chemistry Practice Problems and Problem Sets
Organic Chemistry
When a carbonyl is treated with semicarbazide under acidic conditions an "imine" is produced called a semicarbazone.
Which of the two products below is the correct structure for a semicarbazone? Explain.
What this problem is really asking is "Which nitrogen on semicarbazide is more nucleophilic?"
The nitrogens bonded to the carbonyl on semicarbazide all have resonance forms, so their lone pairs aren't as available for nucleophilic attack.
The other nitrogen (on the left) is the most nucleophilic because it isn't involved in any resonance forms, so its lone pair isn't shared with another atoms.
MendelSet practice problem # 713 submitted by Matt on July 22, 2011.
Show two ways of preparing the alkene below via the Wittig reaction starting from triphenyl phosphine (PPh3).
Is one route better than the other? Why?
Alkenes can be prepared from a combination of ylide and aldehyde or ketone. This is the Wittig reaction.
One carbon on the alkene comes from the carbon bonded to the PPh3 on the ylide, and the other carbon comes from the carbonyl.
There are usually two different ways to make an alkene via the Wittig reaction. So is one way better than the other?
Yes. Ylides come from the SN2 reaction of PPh3 with an alkyl halide. Because it's an SN2 reaction, you want to use the least substituted alkyl halide! (1º is better than 2º). So of the two reactions below that would result in the desired alkene, the top method is better because it involves the less bulky alkyl halide.
This principle also holds true for the Williamson ether synthesis (problem 703). Less substituted alkyl halides are better for SN2 reactions.
MendelSet practice problem # 711 submitted by Matt on July 22, 2011.
Rank the carbonyls A-D below in order of decreasing electrophilicity (reactivity with nucleophiles).
(1 = Most reactive). Explain your reasoning.
The carbonyl carbon is electrophilic because it has a partial positive charge.
Are there any groups that make a carbon more positive? Yes, electron withdrawing groups (EWG). They pull away electron density, which increases electrophility. So C is the most reactive.
Conversely, electron donating groups (EDG) add electron density, and so make the carbonyl carbon less positive, and less electrophilic. Alkyl groups (carbon chains) are mildly EDG so ketone B will be less reactive than C.
Hydrogen is neither a EDG or EWG, so the aldehyde A will be in between the B and C. Also, the hydrogen is very small, so the carbonyl carbon is easily to get to (less steric bulk to block an attack).
Ester D is the least reactive because it has a resonance (the lone pair on the oxygen gets involved).
So overall, the order form most reactive to least reactive is C > A > B > D.
MendelSet practice problem # 710 submitted by Matt on July 22, 2011.
The overall mechanism for Fischer esterification is shown below. This isn't a real mechanism, just an outline.
Methanol (the nucleophile) attacks the carbonyl carbon, forming a tetrahedral intermediate, which then loses a water to reform the carbonyl. This mechanism is called nucleophilic acyl substitution.
Use curved arrows to draw a full mechanism for this reaction. I've included structures for you to use as a guide.
This reaction takes place under acidic conditions, so the mechanism you draw will be similar to those in problem 706.
Acidic mechanisms only appear complicated because they contain several proton transfer steps.
Nucleophilic acyl substitution mechanisms have only three real steps- the "up, down, and kick."
First, the nucleophile attacks the carbonyl carbon, forming a tetrahedral intermediate (the "up").
Then the carbonyl reforms (the "down") and a leaving group leaves (the "kick").
MendelSet practice problem # 708 submitted by Matt on July 22, 2011.
The overall mechanism for imine formation is shown below. (This isn't a real mechanism, just an outline)
Use curved arrows to draw the full mechanism for imine formation under acidic conditions. (I've added outlines of the intermediate structures for you to use as a guide). This mechanism is similar to that in problem 706 (carbonyl hydrate equilibria).
This reaction takes place under acidic conditions, so oxygen should never be negative (only neutral or positively charged).
Acidic mechanisms tend to be a bit of pain, because you have to include many proton transfer steps (protonation and deprotonation).
MendelSet practice problem # 707 submitted by Matt on July 22, 2011.
Carbonyls are in equilibrium with their hydrate forms. This equilibrium happens in both acid and base.
Let's go through this equilibrium under acidic conditions. Draw a mechanism using curved arrows for each reaction below.
Remember that under acidic conditions, most species are either neutral or positively charged, and rarely negatively charged. So your structures will contain either ROH or ROH2+, but not RO-.
a) Carbonyl to Hydrate (acidic)
b) Hydrate to Carbonyl (acidic)
The interconversion between a carbonyl (sp2 carbon) and a tetrahedral intermediate (sp3 carbon) is the most common mechanism you will encounter in second semester organic chemistry.
You should be familiar drawing it under both acidic (this problem) and basic (problem 705) conditions.
In a), the carbonyl "goes up" to form a tetrahedral intermediate.
In b), an oxygen "comes back down" to reform the carbonyl and kick off a leaving group.
You will see this "up, down, kick" pattern in most mechanisms that involve attack at the carbonyl carbon, which is most of the reactions in second semester orgo!
a) Carbonyl to Hydrate (acidic) "UP"
Because this reaction takes place under acidic conditions, the carbonyl must protonate before the nucleophile attacks, to prevent oxygen from ever being negative (ROH instead of RO-).
b) Hydrate to Carbonyl (acidic) "DOWN"
The leaving group must protonate before it leaves, so it doesn't leave as a negative molecule (H2O instead of HO-).
MendelSet practice problem # 706 submitted by Matt on July 22, 2011.
Carbonyls are in equilibrium with their hydrate forms. This equilibrium happens in both acid and base.
Let's go through this equilibrium under basic conditions. Draw a mechanism using curved arrows for each reaction below.
Remember that under basic conditions, most species are either neutral or negatively charged, and rarely positively charged. So your structures will contain either ROH or RO-, but not ROH2+.
a) Carbonyl to Hydrate
Notice that no oxygen is ever positive during these basic mechanisms (always negative or neutral).
b) Hydrate to Carbonyl
The mechanisms in this problem and problem 706 are the most common mechanisms you will draw during second semester organic chemistry, and so it's a good idea to draw them out a few times.
In a), the nucleophile attacks the carbonyl carbon, and the double bond goes "up" to form a tetrahedral (sp3) carbon.
In b), one of the oxygen atoms acts as leaving group, and a lone pair on the other oxygen comes "down" to reform the double bond (and the sp2 carbon).
You will see this "up, down, kick" pattern in most mechanisms that involve attack at the carbonyl carbon, which is most of the reactions in second semester orgo!
a) Carbonyl to Hydrate (basic conditions) "UP"
b) Hydrate to Carbonyl (basic conditions) "DOWN"
MendelSet practice problem # 705 submitted by Matt on July 21, 2011.
Show two ways to prepare the ether below from a combination of an alcohol and an alkyl halide via the Williamson ether synthesis.
Is one way better than the other? Why?
The Williamson ether synthesis takes place in two steps. First an alcohol is deprotonated to form a strong nucleophile (RO-, this step isn't shown in the image below). Then the alkoxide (negative alcohol) attacks an alkyl halide in an SN2 reaction.
So this problem is really asking, which step of conditions is most favorable for an SN2 reaction?
Recall that SN2 reactions compete with E2 reactions. If the nucleophile is too basic, or if there is too much bulk, it will go E2 instead of SN2. (See problem 560 for a full explanation of these competition reactions)
Below, the top combination uses the less substituted (1º) alkyl halide, and so is the best for an SN2 reaction.
The bottom reaction uses a bulkier (2º) alkyl halide, and will probably give a higher percentage of E2 side reaction.
MendelSet practice problem # 703 submitted by Matt on July 21, 2011.